$\begin{aligned} & \hline \mathbf{1} \\ & \text { (i) } \end{aligned}$	Impossible because if 3 letters are correct, the fourth must be also.	E1	1
(ii)	There is only one way to place letters correctly. There are $4!=24$ ways to arrange 4 letters. OR: $\frac{1}{4} \times \frac{1}{3} \times \frac{1}{2}$ NOTE: ANSWER GIVEN	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { B1 for } \frac{1}{4} \times \frac{1}{3} \text { B1 for } \mathrm{x} \frac{1}{2} \end{aligned}$	
(iii)	$\begin{aligned} & \mathrm{E}(X)=1 \times \frac{1}{3}+2 \times \frac{1}{4}+4 \times \frac{1}{24}=1 \\ & \mathrm{E}\left(X^{2}\right)=1 \times \frac{1}{3}+4 \times \frac{1}{4}+16 \times \frac{1}{24}=2 \\ & \text { So } \operatorname{Var}(X)=2-1^{2} \\ & =1 \end{aligned}$	M1 For $\sum x p$ (at least 2 nonzero terms correct) A1 CAO M1 for $\sum \boldsymbol{x}^{2} \boldsymbol{p}$ (at least 2 nonzero terms correct) M1dep for - their $\mathrm{E}(X)^{2}$ A1 FT their $\mathrm{E}(X)$ provided $\operatorname{Var}(X)>0$	5
		TOTAL	8

$\mathbf{2}$ (i)	The company could increase the mean weight. The company could decrease the standard deviation.	B1 CAO B1			
(ii)	Sample mean $=11409 / 25=456.36$	B1			
$S_{x x}=5206937-\frac{11409^{2}}{25}=325.76$					
Sample s.d $=\sqrt{\frac{325.76}{24}}=3.68$	M1 for S ${ }_{x x}$			\quad	A1
:---					

3 (i)	$\mathrm{P}(X=4)=\frac{1}{40}(4)(5)=\frac{1}{2} \quad$ (Answer given)	B1	Calculation must be seen
(ii)	$\begin{aligned} & \mathrm{E}(X)=(2+12+36+80) \frac{1}{40} \\ & \text { So } \mathrm{E}(X)=3.25 \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 cao } \end{array}$	Sum of rp
	$\operatorname{Var}(X)=(2+24+108+320) \frac{1}{40}-3.2$	M1 M1 dep	$\begin{aligned} & \text { Sum of } \mathrm{r}^{2} \mathrm{p} \\ & -3.25 \end{aligned}$
	$\begin{aligned} & =11.35-10.5625 \\ & =0.7875 \end{aligned}$	A1 cao	
(iii)	$\begin{aligned} \text { Expected number of weeks } & =\frac{6}{40} \mathrm{x} 45 \\ & =6.75 \text { weeks } \end{aligned}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	Use of np

4 (i)	Mean $=83.95 / 8=10.49$	B1	
	$\begin{aligned} \text { Variance } & =\frac{881.2119-\frac{83.95^{2}}{8}}{7} \\ & =0.03737 \end{aligned}$	M1	
	Standard deviation $=0.193$	A1	
(ii)	2 standard deviations below mean		
	$\begin{aligned} & =10.49-2(0.193) \\ & =10.104 \end{aligned}$	M1	Follow through if divisor n has been used above.
	but 10.04 < 10.104		
	so 10.04 is an outlier.	A1	
(iii)	This time is much faster than the others. This may be the result of wind assistance, faulty timing, false start and should be discarded. Opposite conclusion such as this could be a genuinely fast time, can also receive full credit.	E1	Appreciating need for investigation Comment in context

PhysicsAndMathsTutor.com

Question		Answer	Marks	$\begin{array}{l}\text { Guidance } \\ \hline\end{array}$			
		G1	$\begin{array}{l}\text { height of bars } \\ \text { Herght of bars - must be linear } \\ \text { vT of heights dep on at least } 3 \\ \text { heights correct and all must } \\ \text { agree with their fds } \\ \text { If fds not given and at least 3 }\end{array}$				
heights correct then max							
M1A0G1G1G0						$\}$	Allow restart with correct
:---							
heights if given fd wrong (for							
last three marks only)							

Question		Answer	Marks	Guidance	
6	(iii)	$\bar{x}-2 s=63.4-(2 \times 14.2)=35$ $\bar{x}+2 s=63.4+(2 \times 14.2)=91.8$ So there are probably some outliers at the lower end, but none at the upper end	M1 A1 E1 [3]	For either No marks in (iii) unless using $\bar{x}+2 s$ or $x-2 s$ For both (FT) Must include an element of doubt and must mention both ends	Only follow through numerical values, not variables such as s, so if a candidate does not find s but then writes here 'limit is $63.4+$ $2 \times$ standard deviation', do NOT award M1 Do not penalise for overspecification Must have correct limits to get this mark
6	(iv)	$\begin{aligned} & \text { Mean }=\begin{array}{c} 3624.5 \\ 50 \end{array}=72.5 \mathrm{~g} \text { (or exact answer } 72.49 \mathrm{~g} \text {) } \\ & S_{x x}=265416-\begin{array}{c} 3624.5^{2}=2676 \\ 50 \end{array} \end{aligned}$ $\mathrm{s}=\sqrt{2676} 49=\sqrt{54.61}=7.39 \mathrm{~g}$	B1 M1 A1 [3]	CAO Ignore units For $S_{x x}$ CAO ignore units Allow 7.4 but NOT 7.3 (unless RMSD with working)	M1 for 265416-50 \times their mean ${ }^{2}$ BUT NOTE M0 if their $S_{x x}<0$ For s^{2} of 54.6 (or better) allow M1A0 with or without working. For RMSD of 7.3 (or better) allow M1A0 provided working seen For RMSD ${ }^{2}$ of 53.5 (or better) allow M1A0 provided working seen

Question		Answer	Marks	Guidance		
$\mathbf{6}$	(v)	Variety A have lower average than Variety B oe	E1	FT their means Do not condone lower central tendency or lower mean	Allow 'on the whole' or similar in place of 'average'. Allow 'more spread' or similar but not 'higher range' or 'higher variance' Condone less consistent. Variety A have higher variation than Variety B oe	FT their sd

7 (i)	(With $\sum f x=7500$ and $\sum f=10000$ then arriving at the mean) (i) $£ 0.75$ scores (B1, B1) (ii) 75 p scores (B1, B1) (iii) 0.75 p scores (B1, B0) (incorrect units) (iv) $£ 75$ scores (B1, B0) (incorrect units) After B0, B0 then sight of $\frac{\mathbf{7 5 0 0}}{\mathbf{1 0 0 0 0}}$ scores SC1. SC1or an answer in the range $£ 0.74-£ 0.76$ or $74 \mathrm{p}-76$ p (both inclusive) scores SC1 (units essential to gain this mark) Standard Deviation: (CARE NEEDED here with close proximity of answers) - $50.2(0)$ using divisor 9999 scores B2 (50.20148921) - 50.198 (= 50.2) using divisor 10000 scores B1(rmsd) - If divisor is not shown (or calc used) and only an answer of 50.2 (i.e. not coming from 50.198) is seen then award B2 on b.o.d. (default) After B0 scored then an attempt at $S_{x x}$ as evident by either $S_{x x}=(5000+200000+25000000)-\frac{7500^{2}}{10000} \quad(=25199375)$ or $S_{x x}=(5000+200000+25000000)-10000(0.75)^{2}$ scores (M1) or M1ft 'their $\mathbf{7 5 0 0}{ }^{\mathbf{2}}$ ' or 'their $\mathbf{0 . 7 5}{ }^{\mathbf{2}}$, NB The structure must be correct in both above cases with a max of 1 slip only after applying the f.t.	B1 for numerical mean (0.75 or 75 seen) B1dep for correct units attached B2 correct s.d. (B1) correct rmsd (B2) default $\sum f x^{2}=25,205,000$ Beware $\sum x^{2}=25,010,100$ After B0 scored then (M1) or M1f.t. for attempt at $S_{x x}$ NB full marks for correct results from recommended method which is use of calculator functions

(ii)	$\begin{aligned} & \text { P(Two } £ 10 \text { or two } £ 100) \\ & \quad \begin{array}{ll} =\frac{50}{10000} \times \frac{49}{9999}+\frac{20}{10000} \times \frac{19}{9999} \\ =0.0000245+0.0000038 & =(0.00002450245+0.00000380038) \\ & =0.000028(3) \text { o.e. } \end{array} \quad=(0.00002830283) \end{aligned}$ After M0, M0 then $\frac{50}{\mathbf{1 0 0 0 0}} \times \frac{50}{\mathbf{1 0 0 0 0}}+\frac{20}{\mathbf{1 0 0 0 0}} \times \frac{20}{\mathbf{1 0 0 0 0}}$ o.e. Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9×10^{-5} o.e.) $\text { Similarly, } \frac{50}{10000} \times \frac{49}{10000}+\frac{20}{10000} \times \frac{19}{10000} \text { scores SC1 }$	M1 for either correct product seen (ignore any multipliers) M1 sum of both correct (ignore any multipliers) A1 CAO (as opposite with no rounding) (SC1 case \#1) (SC1 case \#2) CARE answer is also 2.83×10^{-5}	3
		TOTAL	7

